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In this paper we address learning rates for the density level detection (DLD) problem.
We begin by proving a “No Free Lunch Theorem” showing that rates cannot be obtained
in general. Then we apply a recently established classification framework to obtain rates
for DLD support vector machines under mild assumptions on the density.
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1. Introduction

This paper is a follow up to a recent paper [1] where we developed a classification
framework for the density level detection (DLD) problem. Here we utilize recent
results on classification from [2,3] to provide rate theorems for SVMs for the DLD
problem. Let us begin by defining the density level detection problem. Let (X, .A)
be a measurable space and p a known distribution on (X, A). Furthermore, let @ be
an unknown distribution on (X, A) which has an unknown density h with respect
to p, i.e. dQ = hdp. Given a p > 0 the set {h > p} is called the p-level set of the
density h. As in many other papers (see e.g. [4, 5]) we assume that {h = p} is a
p-zero set and hence it is also a @Q-zero set. Now, the goal of the DLD problem is to
find an estimate of the p-level set of h. To this end we need some information which
in our case is given to us by a training set T' = (z1,...,%,) € X"™. We will assume
in the following that 7" is i.i.d. drawn from Q. With the help of 7" a DLD algorithm
constructs a function fr : X — R for which the set {fr > 0} is an estimate of the p-
level set {h > p}. Since in general { fr > 0} does not exactly coincide with {h > p}
we need a performance measure which describes how well {fr > 0} approximates
the set {h > p}. Probably the best known performance measure (see e.g. [5, 6] and
the references therein) for measurable functions f: X — R is

Sunof) = u({7>0) & {h>p}),

1
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where A denotes the symmetric difference. Then the goal of the DLD problem is to
find fr such that S, 5,,(fr) is close to zero.

The DLD problem is a well known problem in statistics and has important
applications in anomaly detection (see e.g. [1,7] and the references therein) and
many other areas. For example, it can be used for the problem of cluster analy-
sis as described in [8,9] and for testing of multimodality (see e.g. [10,11]). Some
other applications including estimation of non-linear functionals of densities, den-
sity estimation, regression analysis and spectral analysis are briefly described in
[4].

In the statistical literature the most common approach for the DLD problem is
the ezcess mass approach (see e.g. [12,10,4,5], and the references therein). Unfortu-
nately this approach is based on empirical risk minimization and hence in general
we cannot expect this approach to be computationally feasible (see however [12] for
an algorithm with O(n?) space and O(n?) time requirements for a very special class
of distributions on R?). To overcome this problem a method has been proposed in
[1,7] that utilizes a classification performance risk for which quantitative compar-
isons with S, ,, can be achieved (see Theorem 3.1). This classification approach
suggests efficient algorithms which will work for large classes of distributional as-
sumptions. Indeed, in [1] an SVM is specified and universal consistency with respect
to Sy,n,p proved.

In this paper we continue our investigation into the DLD problem by proving
a “No Free Lunch Theorem”. In addition, we use modifications of recent results
of [2,3] applied to this classification framework to provide a learning rate theorem
for the DLD problem in terms of a modification of the geometric noise exponent
a € (0,00] introduced in [2] and the noise exponent ¢ € [0,00] introduced by
Polonik [4]. That is, we show that the SVMs introduced in [1] obtain learning rates
for S, ., essentially of the form

qa
n~ 0+ (2a+1)
if a < q;'—Q and
= 2
___ 29a
n~ Za(a+2)+3¢+4
if a > %}2. A simple version of these rate results has already been announced in

[7].

2. Definitions and Results

In this section we define terms and state our results. We begin by recalling the
definition of noise exponent for DLD from [1]:

Definition 2.1. Let u be a distribution on X and h : X — [0, c0) be a measurable
function with [hdp = 1, i.e. h is a density with respect to w. For p > 0 and
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0 < g < 0o we say that h has p-exponent g if there exists a constant C' > 0 such
that for all sufficiently small ¢ > 0 we have

p({lh—pl <t}) < Ct7. (2.1)

Definition 2.1 was first considered in [4, p. 864] where examples of distributions
with p-exponent 1 for all p and examples with p-exponent % for all p were de-
scribed. In [1] this condition was shown to be closely related to a concept in binary
classification called the Tsybakov noise exponent (see e.g. [5]).

We can now proceed to a No Free Lunch Theorem in the spirit of the well known
result [13, Theorem 7.2] of Devroye et al. Note that here there is a conceptual
difference since the density level p is often considered a tuning parameter and
therefore it is desirable that a No Free Lunch Theorem for DLD guarantees the
existence of densities for which detecting all of their density levels is hard. Such a
result is provided by the following theorem proven in Section 3:

Theorem 2.1. Let 11—6 > ay > ax > ... be a strictly positive, decreasing sequence
converging to 0 and u be a measure on X which has no atoms. Then for every DLD
algorithm D : T — fr there exists a measure Q with density h : X — [0,3] which
has p-exponent oo for all 0 < p < ||h||, such that
3
EI’NQ" Su,h,p(fT) > l_Oan
for all n and all 0 < p < ||h]| .

Theorem 2.1 shows that learning rates are impossible without some restrictions
on the distributions involved. To define such restrictions we consider a modification
of the geometric noise exponent introduced in [2] for the classification problem. To
that end we define

S d(z,{h > p}) if x € {h < p}
= Vdlefh<p)) iz e b3}

where d is the usual distance from a point to a set in the Euclidian space R?. We
then define the geometric noise exponent as follows.

Definition 2.2. Let p be a distribution on X C R? and h : X — [0,00) be a
measurable function with [ hdu =1, i.e. b is a density with respect to . For p > 0
and a € (0,00] we say that h has geometric p-exponent « if

/ 77U h — pldu < oco.
b'e

The exponent a describes the concentration of the measure |h — p|du near the
set {h = p} and does not imply any smoothness of the function h or the set {h = p}.
However, one can show as in [2, Theorem 2.6] that if h has noise exponent ¢ and h
satisfies the envelope condition

[h(z) —p| <cyr), 2z€X
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for some constants v and c,, then h has geometric p-exponent a = %'y ifg>1
and geometric p-exponent «a for all a < %'y otherwise.

We now introduce the learning algorithms we will investigate. To this end let
kE: X xX — R be a positive definite kernel with reproducing kernel Hilbert
space (RKHS) H. Let I : Y x R — [0,00) be the hinge loss function, i.e. I[(y,t) :=
max{0,1 — yt}, y € Y, t € R Then for training sets T = (z1,...,z,,) € X"+
and T~ = (z1,...,2,_) € X", a regularization parameter A > 0, and p > 0 we
define fr+ 7- \ to be a minimizer in

n—

argfgggx\llfllil Zl (1, f (@) (1+p)n ;l(_l,f(mj))’ (2:2)
and (fT+7T—7>\, b+ .7-,x) to be a mininizer in
arg mln A||f||H+( Zl (1, f(xi)+b)+ W;z(_u(mj)w).(g.g)

bER

The decision function of the SVM without offset is fT+ 7-.x : X = R and analo-
gously, the SVM with offset has the decision function fT+ -+ b+ T-x2:X =R

We can now state our main result which considers the sample plan where inde-
pendently ny = nm4 samples are taken i.i.d. from @ and n_ = nm_ samples are
taken i.i.d. from p.

Theorem 2.2. Let X be the closed unit ball of the Euclidian space R?, and p and
Q be distributions on X such that dQQ = hdu for some non-negative function h. For
fixed p > 0 assume that the density h has both p-exponent q € [0,00] and geometric
p-exponent o € (0,00). We define

-1 .
n 2T if a < %
Ap = _ _2(at1)(g+D) .
n~ 2eG@+2+3a+%  gtherwise,

and o, = An @ in both cases. Then for all € > 0 there exists a constant C > 0

such that for allz > 1,n > 1, my > 1 and m_ > 1, the SVM defined in line (2.2)
using A, and Gaussian RBF kernel k,, (z,z') = exp(—o2|z — z'||3),z,2' € X,
satisfies

Q"™ ® u"m‘)*((T+,T_) :Sp(fr+m-a,) < CxQn_%ﬁ) > 1—e™"

if a §‘12—2and

Q"+ © p =) (T4, 17) : Sp(frerp,) S CaPn” mEdimmate) > 1 -

otherwise. If a = oo the latter concentration inequality holds if o, = o is a constant
with o > 2v/d. Furthermore, all results hold for the SVM with offset defined in line
(2.8) if ¢ > 0. Finally, the notation (Q™™+ @ u™™~)* denotes the outer probability
of Q™+ @ ™™~ and is used to avoid measurability considerations.
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Remark 2.1. In the proof of Theorem 2.2 we prove rates for a classification risk
Rp (see line (3.2)) which, although it may appear merely as a technical device, can
be construed as a performance measure for density level detection with as much
validity as Sp. See [1] for a discussion.

Remark 2.2. (SVMs using Sobolev spaces) Theorem 2.2 is modeled on [2, The-
orem 2.8] and chooses the Gaussian RBF parameter o to depend on n and both
noise exponents. However [3, Example 1] shows how results similar to [2, Theorem
2.8] can be obtained for classification with a fixed choice of Sobolev space for the
RKHS. Using the same techniques we use to prove Theorem 2.2 we obtain the ana-
logue of [3, Theorem 1] and therefore the analogue of [3, Example 1] for density
level detection. The latter can be stated as follows: Let X be the unit ball in R¢ and
choose as a RKHS the Sobolev space W™ (X) with m > d/2. Let u and @ be dis-
tributions on X such that dQ = hdu. For fixed p > 0 assume that the density h has
both p-exponent ¢ € [0, 00] and geometric p-exponent a € (0,00). Then with the
appropriate choice of regularization parameter we obtain optimal rates essentially
of the form

B 4admg
n~ (@matdgtam)(2ad+d+2m) |

3. Proofs

In this section we prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. The proof uses ideas from Devroye et al. [13, Theorem
7.2]. Let us first assume that a; < % and define a,, := 2a,. If (p,) denotes the

sequence of [13, Lem. 7.1] with respect to (a,) we write p,, := %". Now recall that

Lyapunov’s theorem states that the image of every atom-free finite measure is a
closed interval. Therefore, we can inductively find a partition A 1, Ag, A1, Ao, ...

of X with u(A_1) = %, u(4o) = 3, and p(A,) = p, for n > 1. Furthermore,

let ¥ be the measure on {0,1} which is defined by #({0}) = . We will use the
product measure v := @;° 7 on  := {0, 1} for constructing “random densities”.
To this end we write ¢, = % + Z;’il w;p; for all w = (w;) € Q. Now, given an
w € Q we define a density h, : X — [0,3] by hy, := 0on A_y, h, = CL on

Ao, and hy(n) := 2= on A, for n > 1. It follows that ||hll = - Consequgntly,

[

the relation s = s implies we only need to consider the s interval (chrl,l).
Consider the shorthand notation S, s := Sun,,, Where p = £=2 and let us fix an
s € ( cfj_l,l) with the corresponding p = % Since the definition of h, implies

that {hy, > p'} = {hy > p} for all p' € (0, i) and all w € Q, denoting s’ =
we obtain for any f that

S () = 1({F > 0} 8 {h > p'}) = u({f > 0} & {h > p}) = Sus ():
Consequently any w found to provide the inequality of the theorem for our fixed

s € (7247, 1) also works for any other value s' € (J%47,1).

_1
1+4p"?
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Now, for T = (z;) € X*° we write T}, := (z1,...,2,) and obtain
[nt = [ Su(n) Q)
/ /X inf Sus(f1,) QX (dT)v(dw)

0o N2>1 (07

2// 10, (S s (o) 20} Q0 (AT ) (dw)

Q J X

21—2// L(Su o (fra)<an} Qi (dT)v(dw) .
n=1 QJ X

Furthermore, for w € Q, ¢ > 1 and a decision function f : X — Y we write
E,i(f)==4in ({f >0} A {hy, > p})

Now for i > 1 we define fr, (i) := argmax, u({fr, = y}NA;), where in the presence
of a tie we set fr, (i) := 1. This definition implies

LB (Franzpi/2t 2 L (o1}
and since u(E, i(f)) > ﬂl{M(Ew,i(f))Zpi/2} we obtain

00 1 &
ws(fT (U sz fT ) > Z;,U/(Ew,i(an)) > izl{an(i);éQwi,l}pi-

i=—1

Since this shows

{(va) :Sw,s(an) < an} C {(va) : Zl{an(i);éQwi,l}pi < 2an}
i=1
we obtain

/Q /Xw 1(5. . (fr, ) <an} @2 (AT (dw)
< /Q/ - 1{2;’;1 1{fT"(i)¢2wi,1}pi<2an}on(dT)V(dW)
) /Q / " 1{2’21 1{an(i)¢2ui_1}pi<2an}QZ(dT)V(dw)
B /9 / " 1{2?11 l{f‘Tn(i>¢2wl——1}Pi<2an} 31;[1 hy (zj)p™ (dT)v(dw)

3"// 1, "(dT)v(dw
< o Jxn {Ei=11{an(i)¢2Wi_l}pi<2an}/‘( Jv(dw)

3" 1 v(dw)p™(dT),
- /n/Q {ZieT1{an(i)¢2wi—1}pi<2“"} (dw)”(dT)

where i ¢ T = (z1,...,2,) means {i : A; N {z1,...,2,} = 0}. Now, for fixed
T = (z1,...,2,) € X™ we denote by Q the product of the z;th components of 2,
i = 1,...,n. Analogously, Q- denotes the product of the remaining components
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of . Obviously we have Q@ = Q_p x Qp. Analogously, the measure v can be
decomposed into v = v—r ® vp. With this notation we obtain

! v(dw
/Q {ZiQT l{an(i)¢2wi_1}pi<2an} (dw)
- ' v-T dwﬁT 1z dWT )
/QT /QﬂT {ZieT 1{an(i)¢2wi_1}pi<2an} ( Yor( )
Now, we observe
1 o ) o
/QjT (Beer l{fT"(i)#w“l}piQa"}V r(d-r) /SLT {Sigr Liwi=ypi<2an }V 7 (dw-7)
B /SLT l{zieT Wipi<2an}VﬁT(dwﬁT) ,
and hence we get
/Q {ZieTl{fT"(i)#2wi71}pi<2a"}V( OJ) /Q {EigTwipi<2an}V( UJ)
S/Q]‘{E?in+1wipi<2an}’/(dW)

- /Q I{Ei'inﬂ Wif)i<2dn}’/(dw)

S e—Qn

)

where the last inequality was established in [13, p. 117]. Hence we find

/Q inf = [ Su.(fr) Q" (dT)(dw)

n>1 Qp Xn

(oo}
> 1- 3" 1 v(dw)u™(dT
= nzzjl /n/Q {ZieT 1{an(i)¢2ui—1}pi<2a"} ( )I’L ( )
> 1-) 3re ™
n=1
_e2—6
 e2-3
3
> —.
- 10
Therefore, there exists an w € Q with
3a,
~Q"nOw,s > —
Br~arSuslfr) 2
forall n > 1. O

We now proceed with preparations towards the proof of Theorem 2.2. We begin
by recalling the classification framework for DLD introduced in [1]. We have the
following definition.
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Definition 3.1. Let p and @) be probability measures on X and s € (0,1). Then
the probability measure Q ©; p on X x Y is defined by

QOspu(A) == sErgla(r,1) + (1 —s)Epuyla(z,—1)

for all measurable subsets A C X x Y. Here we used the shorthand 14(z,y) :=
14((z,y)) where 14 is the indicator function of the set A.

Roughly speaking, the distribution @ ©; p measures the “1-slice” of A C X X
Y by sQ and the “—1-slice” by (1 — s)u. Moreover, the measure P := @Q O, u
can obviously be associated with a binary classification problem in which positive
samples are drawn from s() and negative samples are drawn from (1 — s)u. Inspired
by this interpretation let us recall that the binary classification risk for a measurable
function f : X — R and a distribution P on X X Y is defined by

Rp(f) = P({(z,y) : signf(z) # y}) , (3-2)

where we define signt := 1 if ¢t > 0 and signt = —1 otherwise. Furthermore, the
Bayes risk R} of P is the smallest possible classification risk with respect to P, i.e.

Rp = inf{Rp(f) | f:X—=>R measurable} .

It is shown in [1] that every distribution P := Q) ©, pu with dQ := hdp and s € (0,1)
determines a triple (u, h, p) with p := (1 — s)/s and vice-versa. We therefore use
the shorthand Sp(f) := Su.n,,(f).

In [1] it was shown that Sp(f,) — 0 if and only if Rp(f,) = R%. Therefore a
classification algorithm which makes Rp close to R} also makes Sp close to zero.
Furthermore the following theorem, providing a more quantitative relationship in
terms of the p-exponent ¢, was also established.

Theorem 3.1. Let p > 0 and p and @) be probability measures on X such that @
has a density h with respect to u. For s := —— we write P := Q ©, . Then the

14+p
following statements hold:

(1) If h is bounded then there exists a constant ¢ > 0 such that for all measurable
f:+ X — R we have

Rp(f) =Rp < ¢Sp(f).

(2) If h has p-exponent q € (0,00] then there exists a constant ¢ > 0 such that for
all measurable f : X — R we have

Sp(f) < e(Rp(f) —Rp) ™.

Theorem 3.1 justifies using learning algorithms designed to minimize the risk
function Rp for the DLD problem. Therefore consider a class of functions F on X,
a loss function L : F x X x {—1,1} — [0,00) and denote L o f(z,y) = L(f,z,y).
Let P := Q ©, 1 where s := ——. In general, we abuse notation by denoting the

T+
empirical distribution corresponding to a sample T with the same symbol 7. This
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identification implies that the symbol Er means the sample average over T'. Define
an induced loss function

1 p
Lo f(z) = —L(f,z,1) + —F, ., L(f,2',-1), ze€X.
f@) = g L) + B L )
For a training set ' = (z1,...,%,,) € X"+ we define the empirical approximation
n4

Rpr(f) = ErL® f = ZL(f,:rj,l)+p—f_lIEI,NuL(f,x’,_l).
1

ne(p+1) <
Then since

RLJD(f) = EpLof=EQpL®f,

if we can find

fr € argmin R r(f),

then the results from [2] could be applied to obtain learning rates. However this
approach suffers from the fact that we need to know the functional dependence
of E;v oy L(f,2',—1) on f € F. Consequently, in general there appear to be no
efficient algorithms for finding fr. In [2] it was proposed to replace the term
E. ~,L(f,2',—1) with the empirical approximation n% Z?;l L(f,z;,—1) deter-
mined by taking n_ i.i.d. samples T~ = (i, ...,x}, ) from p. With the appropriate
choice of L there exist efficient algorithms but now we are not minimizing a sample
average but the convex combination of a sample average over T with a sample aver-
age over T~ and so the performance analysis of [2] has to be reconsidered. Instead
of analyzing this case in its full generality, here we only consider the case when
ny = nmy and n_ = nm_ have a common factor n and derive rates in terms of n.

We first explain our approach when ny = n_. We define an induced loss function

Lo flat,a) = pTllL(f,m+,1)+ﬁL(f,m*,—1), (@h e )eX x X .

It follows that
_ ! P _
EQ@ML@f_ p+1EQL(f) )1)+ p+1EuL(f> ) 1) _EPL(f> ) )

and
Y Lo ftay) = ——= Y L(f.ef,1) + p—_’;l S L(f,27,-1)
Jj=1 Jj=1

so that the two independent sample averages over X become one sample average
over X x X.

Let us now proceed to the more general case n,. = nm4 and n_ = nm_. Let
L:FxXx{-1,1} — R be a loss function, and denote Lo f(z,y) = L(f,z,y),
Ly o f(z) = L(f,z,1), and L_ o f(z) = L(f,z,—1). Let m; and m_ be two
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positive integers and consider the nm -sample T+ € X"+ sampled from @ and
the nm_-sample T~ € X™"~ sampled from p. Consider the obvious bijections

Xnm+ — (Xm+)n

Xnm_ — (Xm_)n
decomposing T into T+ = (Z;,...,ZF) and T~ into T~ = (Z;,...,Z;) with
Zf e Xm+,j=1,.,nand Z; € X™-,j=1,.,n. They induce a bijection

X XM o (XM X X))
which maps the nm + nm_-sample (T, T~) with points in X to the n-sample
T=(2",21), .2y, Z,))

with points in X™+ x X™-. Recall that if we consider a point Z+ in X™+ as an
m.-sample with points in X we write the sample average as E;+ and do likewise
for Z— in X™~. In addition Er denotes the sample average over the n-sample T.
We now introduce the induced loss function L on X™+ x X™~ by

_ 1 p
+ — —
Lef(Z7,Z7) = Eztg,z-)Lof= p+1EZ+(L+of)+p+1EZ_ (L_0f).(3.3)

The following lemma establishes useful relations for the expected values of sam-
ple averages.

Lemma 3.1. Consider g : X x {—1,1} — R*. For (T+,T~) € X"+ x X"m-
decompose T+ into T+ = (Z}, ..., ZF) and T~ into T~ = (Z],...,Z,) and let T =
((Zf‘, Z7 )y s (ZTJ{,Z;)) denote the induced n-sample on X"+ x X™- . Consider
the induced function

§(Z+,Z27) = Ez+e,2-)9
defined on X™+ x X"™~. Then

Erg = Er+o,7-)9,
Eqm+ gum-)9 = Ege, u9,
]E(Q"“r ®um*)§2 < EQesug2-

Proof. Denote g; := g¢g(-,1) and g— := g(-,—1). We have
1 n 1 n 1 my N 1 n,m4 N
- ZEZ;m = Z p— Z!H(Zj,z) = ms 9+(Z))
Jj=1 Jj=1 =1 j=1,l=1

and since Z;fl, j=1,n, Il =1,m,4 are the components of the nm_-sample TT the
righthand side is equal to Er+ ¢g4. Therefore

1« 1
- ZJEZ; 9+ =Er+gy and — > Ey-9-=Er-g- (3.4)
j=1

=1
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and so

1
]ETg:EZg(Z;F

I + _q._
p+1Er+g+ p+1Er g9
= Er+o,7-)9

establishing the first assertion. For the second assertion observe that

, 1 p
Egm+ oum-)9 = Ez+ z-)nom+ @um- (p n lEz+ 9+ + mEz— g—)
1
= m]E(z+ ~or) Bzt gr + —— e Ez-~opm—)Bz-9-.
Since g is non-negative both g4 and g_ are non-negative and Tonelli’s theorem
implies that Ez+ wgm+)Ez+ g+ = Egg+ and Ez- o= )Ez- g— = E, g_. Therefore
we obtain
; N
B rma o m_ _
Q™+ oum-)J = p+1EQ9+ P E.g- =Ego,ug

establishing the second assertion. Finally, Jensen’s inequality and Tonelli’s theorem
imply

o 2
E@m+oum-)d _E((z+,z—)NQm+®um—)(]E(ZJr@sZ’)g)

2
<B((g1 5 egrapnn) it 0,709

= EQesuQQ- O

The proof of Theorem 2.2 follows very closely that of the rate theorem for
classification using Gaussian kernels [2, Theorem 2.8]. With that in mind we require
a slight generalization of [2, Theorem 5.1]. It differs in that it does not require F to
be a set of functions on the domain of the measure space. The proof is essentially
the same so it will not be repeated here.

Theorem 3.2. Let P be a probability measure on a set W. Let F be a convex sub-
set of a vector space and let L : F x W — [0,00) be a convezr and line-continuous
loss function such that the functions {L(f,") : f € F} from W — [0,00) are
bounded, measurable, and separable with respect to ||| . Denote L® f(-) := L(f,")
and let T € W" be an n-sample. Let frr € argmingcrErL o f, fpf €
argminger Eg L © f and define

={Lof-Lofpy : feF}.
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and its modulus of continuity

wn(6,€) = Bp_p. ( swp  [Epg—Erg)).
g€g,
Epg§® <€

Suppose that there are constants ¢ > 0, 0 < o < 1, > 0 and B > 0 with
Epg? < c(Epg)®+6 and ||g||,, < B forallg€G. Letn > 1, x>0 and e > 0 with

1
. ) 4 ==« B
e > 10max{wn(g,cs" +9), %, <%> ,73:}

Then we have
(P (T € W" :ByL® fry <EgL@fpr+e) > 1—e 7.

We are now in a position to prove the analogue of [2, Theorem 5.8] when in-
dependently the nm. -sample T+ € X"+ is i.i.d. sampled from @ and the nm _-
sample - € X™- is i.i.d. sampled from u. Let us introduce some notation.

Let Rr p(f) = EpLo f denote the L-risk and let fpr € argminser Rr p(f)
denote a minimizer. For the nmy + nm_-sample (T, T7) € X"+ x X" let
Reorer-(f) = Erqig,ryLof and let fr+ - 7 € argminger Ry p+ 17 (f)

denote an empirical minimizer.

Theorem 3.3. Let ) and p be probability measures on a set X and let P :=
Q Ss p with 0 < s < 1. Let F be a convex subset of a vector space and let L :
F x X x{-1,1} = [0,00) be a convezr and line-continuous loss function such that
the functions {L(f,-) : f € F} from X x{=1,1} = [0, 00) are bounded, measurable,
and separable with respect to ||.|| . Denote Lo f(-) = L(f,-) and consider the
class

g = {Lof—LOfP’]-‘ : f€.7:}.

of functions on X x{—1,1} Suppose that there are constantsc > 0,0 < a <1,§ >0
and B > 0 with Epg® < c(Epg)® + 6 and ||g||,, < B for all g € G. Furthermore,
assume that there are constants a > 1 and 0 < p < 2 with

sup log N (B™'G,e, Ly(TT,T7)) < ac™? (3.5)
(T+,T=)eX™ ™+ x X"~

for all e > 0. Then there exists a constant c, > 0 depending only on p such that for
alln>1, my >1, m_>1 and all z > 0 we have

Q7™+ @ pm=)* ((T+,T_) :Re.p(fr+r-.7) > Rep(frr) + ¢ 6) <e™?,

where

(NI

2
2  _2=p (@A ZI 2atap p .2-p [ Q
e = &(n,a,B,c,d,1) := B*2xtap ci2atar (—) +Bz§ 2 (—)
n n

+B(%)%+\/¥+(%)21& +%.
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Proof. We intend to apply Theorem 3.2 with W = X™+ x X™- measure P =
Q"+ @ u™-, and the loss function L® defined in (3.3). First observe that Lemma
3.1 implies that Egm+g,m-)L © f = Eqo,uL o f = Rpp(f) and ErL @ f =
Er+e,m-)Lo f = Ry v+ (f) so that we obtain the correct risk in the statement
of the theorem and the correct empirical risk function to define fr+ 7— . Next we
need to translate the variance and supremum bound assumptions on G to variance
and supremum bounds on G. To that end observe that for f € F the corresponding
g€Gis Lo f— Lo fpr and the corresponding § € G is
JZ%,2)=Le f(Z",Z")- Lo frr(Z",2")

=Ez+o,2-)(Lof— Lo fpF)

= E(Z+esz—)g.
Assume for the moment that ¢ and § correspond to the same f and so are related
in this way. Since E(z+g,z-) is an averaging operation it follows that [|d|lc <
B if ||g]l.o < B. Moreover, Lemma 3.1 implies that Egm+g,m-)g = Epg and
E(Q"Ur ®UM7)'g’2 S Epg2 so that E(Q"Ur ®UM7)g’2 S C (E(Qer ®um7)g')a + o if Epg2 S
¢(Epg)®+46. Therefore we can translate variance bounds on G into variance bounds
of the same form on g

We may now apply Theorem 3.2. We need to bound the modulus wy(G,¢) in

terms of the covering bound assumption. Although Jensen’s inequality and Lemma
3.1 imply that

wn(g: ) > wn(G,¢)

this inequality goes the wrong way to be useful. We proceed instead by bounding
the modulus of continuity in terms of the local Rademacher average (see [14])

wn(G,e) < 2Rad(G,n,e)

and then utilizing [2, Proposition 5.4] to bound the Rademacher average in terms
of covering numbers followed by comparing the covering numbers of G in terms of
the covering numbers of G. Indeed, write §(Z*,Z7) = E(z+o,z-)g and consider an
n-sample T = ((Z{",27),...,(Z}, Z,)) on X"+ x X™~. Denote T* = (Z;, ..., Z;})
and T~ = (Z,...,Z, ). Then by Jensen’s inequality we obtain

) L, _ 1« 1«
1911757y = -~ S 19(Zf, z)P = -~ Y [Ez+e.z-)9 < - > Eiz+o.2-)9°
j=1 j=1 j=1

1 p
2 _ 2 2
=Er+o,1-)9 = —p 1 ||g||L2(T+) + —p 1 ||g||L2(T—)

and consequently

, 1 p
191122y <4/ m”g”Lz(T"’) +4/ mHgHm(T—)-



June 8, 2005 9:21 WSPC/INSTRUCTION FILE final

14  Scovel, Hush, and Steinwart

Therefore by choosing a set in G which determines an € cover for || - ||%2(T+) and
then for each component of the cover choosing a set in G which determines an €/,/p
cover for || -[|7, ;- we obtain that

, 1 [pad
N (G, e, Lo(T)) <N(G, \/p—l-le Lo(TH)N (G, 5 %e,[Q(T_)).

Consequently assumption (35) implies

suplog V' (B™'G,e, L»(T)) < Sac™®.
T

Thus we can apply [2, Proposition 5.7] to bound the local Rademacher average
Rad(G,n,e) using 8a instead of a. The rest of the proof follows as in the proof of
[2, Theorem 5.8] where we use the inequality e(n, 8a, B, ¢, d, z) < 82(n, a, B, ¢, d, ).

O

Proof of Theorem 2.2. The proof follows very closely that of the rate theorem
for classification using Gaussian kernels [2, Theorem 2.8]. Let I be the hinge loss
defined by I(y,t) := max{0,1 — yt}, y € Y, t € R. We select the loss function

L(f,z,y) = MIfllE + Uy, f(z))
for the no-offset case F = H and

L(f,b,2,y) = M| fll + 1y, f(x) +b)
for the offset case F = H x R. Consequently for an nm_ +nm_-sample (T, T7) €
X7mm+ x X™- | an empirical minimizer fr+ r- 7 € argminger Ry v+ 7-(f) is a
solution of equation (2.2) when F = H and equation (2.3) when F = H x R.

A simple calculation shows that the density h has geometric p-exponent « if
and only if P := @ ©, p has geometric exponent a in the sense of [2]. Moreover
[1, Proposition 2.9] shows that h has p-exponent ¢ if and only if P := Q ©; u
has Tsybakov noise exponent ¢ in the sense of [5]. Therefore if we recall that in
the proof of Theorem 3.3 we observed that variance bounds on G imply the same
variance bounds on G, we conclude that the variance bounds of [2,Proposition 6.1
and Proposition 6.8] hold on G with measure Q™+ ® u™= . Since we have established
Theorem 3.3 as an analogue of [2, Theorem 5.8] and the proof of [2, Lemma 7.2]
uses only the function €(+), [2, Lemma 7.2] holds with X™+ x X™- instead of the
stated X x {—1,1}. In the same way that [2, Theorem 2.8] follows from [2, Lemma
7.2] we obtain from this modification of [2, Lemma 7.2] that
@ @ ) (T, 1) e Rp(freg-a,) < Rp + CaPns17¢) > 1"
ifa < % and

2a(q+1

@™+ @ pu"m)" (RP(fT*',T_,An) < Rp + Ca’n ere) 2 1-e”

otherwise. If & = oo the latter concentration inequality holds if o,, = ¢ is a constant
with ¢ > 2v/d. Furthermore, all results hold for the L1-SVM with offset if ¢ > 0.
Theorem 2.2 then follows directly from Theorem 3.1 and the inequality ﬁ <1.0O
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